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INVARIANT AND PARTIALLY INVARIANT SOLUTIONS

OF THE GREEN–NAGHDI EQUATIONS

UDC 517.9; 532.592Yu. Yu. Bagderina1 and A. P. Chupakhin2

All invariant and partially invariant solutions of the Green–Naghdi equations are obtained that de-
scribe the second approximation of shallow water theory. It is proved that all nontrivial invariant
solutions belong to one of the following types: Galilean-invariant, stationary, and self-similar solu-
tions. The Galilean-invariant solutions are described by the solutions of the second Painleve equation,
the stationary solutions by elliptic functions, and the self-similar solutions by the solutions of the
system of ordinary differential equations of the fourth order. It is shown that all partially invariant
solutions reduce to invariant solutions.

Key words: Green–Naghdi equations, invariant and partially invariant solutions, Painleve equa-
tion.

1. Main Results. One of the conventional models of the second-order shallow water approximation is the
Green–Naghdi system of equations [1, 2]:

ht + (uh)x = 0, ut + uux + ghx = (h3(uxt + uuxx − u2
x))x/(3h). (1.1)

In (1.1), h(t, x) and u(t, x) are used to denote the height of the fluid free surface above the horizontal bottom and
the average flow velocity in the horizontal direction; g = const is the acceleration of gravity.

The basis of the Lie algebra admitted by Eqs. (1.1) is formed by the operators

Y1 = ∂t, Y2 = ∂x, Y3 = t∂x + ∂u, Y4 = t ∂t + 2x∂x + u ∂u + 2h ∂h. (1.2)

In the present paper, it is shown that all invariant solutions of Eqs. (1.1) belong to one of the following
types.

1. The Galilean-invariant solutions:
— Solutions generated by the subalgebra 〈Y1 + βY3〉 with a real-valued parameter β �= 0, which are

represented as

u = βt + U(y), h = H(y), UH = c1, (1.3)

where y = x − βt2/2 and c1 = const. Let

w = (βc1/
√

3)1/3/U, y = (c2
1/(3β))1/3ξ − c2,

α = −√
3g/(4β) and c2 are constants. Then, the factor-equation describing these solution is written as

w
d2w

dξ2
=

1
2

(dw

dξ

)2

− 1
2
− ξw2 + 4αw3; (1.4)

— Solutions generated by the subalgebra 〈Y3〉 and defined by the formulas

u = (x + u0)/t, h = h0/t, (1.5)

where u0 and h0 are arbitrary constants;
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— Self-similar solutions generated by the subalgebra 〈Y1 + βY3, Y4〉 and defined by the formulas

u = βt, h = (β2/(2g))(t2 − 2x/β), β �= 0. (1.6)

2. The stationary solutions generated by the subalgebra 〈Y1〉 and represented as

u = U(x), h = H(x), UH = c1. (1.7)

The factor-equation describing such solutions reduces to the elliptical integral
H∫

h0

(−3gc−2
1 H3 + c2H

2 + c3H + 3)−1/2 dH = c4 ± x, (1.8)

where c1, c2, c3, and c4 are constants. From (1.8) setting c1 = j
√

g, c2 = 3 + 6/j2, c3 = −6− 3/j2, c4 = 0, h0 = j2,
and |j| > 1, we obtain the one-soliton solution (which was found in [1]) of the Green–Naghdi equations:

u = j
√

g(j2 + (1 − j2) tanh 2 ξ)−1, h = j2 + (1 − j2) tanh 2 ξ, ξ = (
√

3(j2 − 1)/(2j))x.

3. The self-similar solutions generated by the subalgebra 〈Y4〉 and represented as

u = tU(z), h = t2H(z), z = xt−2. (1.9)

The factor-system for the functions U and H has the form

(UH)′ − 2zH ′ + 2H = 0,

3H(g + (U − 2z)U ′ + U) + (H3(U ′ + U ′2 + (2z − U)U ′′))′ = 0.
(1.10)

This system has the particular one-parameter solution U = c1, H = (c1/g)(c1/2 − z). In addition to solutions
(1.3)–(1.10) there are trivial solutions, for which u = u0 = const and h = h0 = const; in this case, it is possible that
u0 = 0 or h0 = 0.

All partially invariant solutions of Eqs. (1.1) reduce to invariant solutions, and, therefore, they are trivial or
belong to one of the above-mentioned types.

Equation (1.4) is included in the Painleve list of 50 equations, whose solution dose not have movable singular
points different from poles [3]. Its solution w is expressed in terms of the solution v of the second Painleve equation

d2v

dξ2
= 2v3 + ξv − 2α − 1

2

using the Miura transformation

2αw =
dv

dξ
+ v2 +

ξ

2
.

The system of Green–Naghdi equations (1.1) admits the Lie algebra (1.2), which is isomorphic to the symmetry
algebra of the Korteweg–de Vries equation. The invariant solutions (1.3)–(1.10) have the corresponding analogs for
this equation. The question of the existence of multisoliton solutions for the Green–Naghdi equations (1.1) remains
open today.

In the subsequent sections of the paper, it is proved that solutions (1.3)–(1.10) exhaust the set of invariant
and partially invariant solutions of Eqs. (1.1). The possible representations of the invariant and partially invariant
solutions are constructed using the optimal system of subalgebras of the symmetry algebra L4 (1.2), and the
factors-systems obtained in this case are then analyzed.

2. Optimal System of Subalgebras of the Symmetry Algebra [4, 5]. The optimal system (OS) of
subalgebras of the algebra L4 was constructed in [6] along with the OS for all types of three and four-dimensional
Lie algebras, and it has the following form:

— the OS of the three-dimensional subalgebras Θ3L4

〈1, 2, 3〉, 〈2, α1 + β3, 4〉; (2.1)

— the OS of the two-dimensional subalgebras Θ2L4

〈2, α1 + β3〉, 〈2, 4〉, 〈α1 + β3, 4〉; (2.2)
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TABLE 1

Subalgebra number Basis of subalgebra Normalizer of the subalgebra

4.1 1, 2, 3, 4 = 4.1

3.1 1, 2, 3 4.1
3.2 1 + β3, 2, 4 = 3.2
3.3 2, 3, 4 = 3.3

2.1 2, 3 4.1
2.2 2, 1 + β3 4.1
2.3 2, 4 = 2.3
2.4 1 + β3, 4 = 2.4
2.5 3, 4 = 2.5

1.1 2 4.1
1.2 1 + β3 3.2
1.3 3 3.3
1.4 4 = 1.4

Note. The “=” sign denotes self-normalized subalgebras.

— the OS of the one-dimensional subalgebras Θ1L4

〈2〉, 〈α1 + β3〉, 〈4〉. (2.3)

Here α, β ∈ R and α2 + β2 �= 0. In formulas (2.1)–(2.3), operators (1.2) are denoted by their numbers for brevity.
In calculating the invariants of the subalgebras containing the operator α1 + β3, it is more convenient to consider
the cases α = 0 and α �= 0 separately. Therefore, the OS of subalgebras of the algebra L4 (1.2) used in this
paper differs from (2.1)–(2.3) and is given in Table 1. In this algebra, the subalgebras are enumerated by pairs of
numbers (r.i), where r denotes the dimension of the subalgebra, and i its ordinal number among the subalgebras of
the given dimension. Below, the invariant solution constructed by the subalgebra Lr.i is denoted by IS (Lr.i), and
the partially invariant solution by PIS (Lr.i).

3. Invariant Solutions. The invariant solutions (ISs) can be treated as partially invariant solutions (PISs)
whose defect is equal to zero. The type of PIS is determined by the pair of numbers (ρ, δ), where ρ is the rank of
the solution (the number of independent variables on which the invariant functions depend) and δ is the defect of
the solution (the number of superfluous functions which do not have invariant representations). Let n and m be the
numbers of independent and dependent variables, respectively, of the basic equation. The subalgebra Lr.i generates
PISs of the type of (ρ, δ), where ρ and δ satisfy the conditions [4]

max {r∗ − n, m − q, 0} ≤ δ ≤ min {r∗, m − 1}, ρ = l − m + δ. (3.1)

Here r∗ is the overall rank of the matrix composed of the coordinates of the operators that form the basis of
the subalgebra Lr.i, l = n + m − r∗ is the number of functionally independent invariants, and q is the degree of
completeness of this set of invariants with respect to the dependent variables.

Table 2 gives the complete set of functionally independent invariants for the subalgebras from the optimal
system of subalgebras of the algebra L4. An analysis of condition (3.1) for them leads to the conclusion that
the subalgebras L3.i generate PISs of type (0,1), the subalgebra L2.1 generates PISs of type (1,1), subalgebra L2.i

(i = 2, . . . , 5) PISs of type (1,1) and ISs of rank 0, and the subalgebras L1.i generate ISs of rank 1. The third column
of Table 2 gives the representation of the invariant solution. Here and below, u0, h0, a, cj = const; y = x − βt2/2,
and z = x/t2.

Let us write all invariant solutions of the Green–Naghdi equations (1.1).
IS (L2.2). The factor-system contains an identity and the equality β = 0, and the solution u = u0, h = h0

exists only for β = 0.
IS (L2.3). The reduced equations (1.1) are written as 2h0t = 0, u0 = 0, and the solution has the form u = 0,

h = 0.
IS (L2.4). The factor-system consists of the equations 3u0h0y

1/2/2 = 0 and β + u2
0/2 + gh0 + u2

0h
2
0/3 = 0,

whose solution is u0 = 0, h0 = −β/g; the invariant solution has the form (1.6). In addition, for β < 0, there is the
solution u = βt +

√−2β (x − βt2/2)1/2, h = 0.
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TABLE 2

Subalgebra
number

Basis
of invariants

Representation
of IS

Representation
of PIS

3.1 h — h = h0, u = u(t, x)

3.2 (u − βt)h−1/2 — h = h(t, x), u = βt + u0h1/2

3.3 t−2h — h = h0t2, u = u(t, x)

2.1 t, h — h = H(t), u = u(t, x)
2.2 u − βt, h u = βt + u0, h = h0 h = h(t, x), u = βt + U(h)
2.3 t−1u, t−2h u = u0t, h = h0t2 h = t2H(t, x), u = tU(H)

2.4 y−1/2(u − βt), y−1h u = βt + u0y1/2, h = h0y h = yH(t, x), u = βt + y1/2U(H)
2.5 t−1u − t−2x, t−2h u = u0t + x/t, h = h0t2 h = t2H(t, x), u = tU(H) + x/t

1.1 t, u, h u = U(t), h = H(t) —
1.2 y, u − βt, h u = βt + U(y), h = H(y) —
1.3 t, u − x/t, h u = U(t) + x/t, h = H(t) —
1.4 z, t−1u, t−2h u = tU(z), h = t2H(z) —

Note. The dash denotes the absence of solutions of the given type.

IS (L2.5). The reduced equations (1.1) are written as 3h0t = 0 and 2u0 = 0; the solution has the form
u = x/t, h = 0.

IS (L1.1). Substitution of the representation of the solution into Eqs. (1.1) leads to H ′ = 0 and U ′ = 0,
which gives the constant invariant solution u = u0, h = h0.

IS (L1.2). Substitution of the representation of the solution into Eqs. (1.1) leads to the factor-system

(HU)′ = 0, β + UU ′ + gH ′ = (H3(UU ′′ − U ′2))′/(3H),

which is twice integrated:

U = c1/H, HH ′′ = H ′2/2 − 3/2 − 3(gH3 + β(y + c2)H2)/c2
1. (3.2)

For β �= 0, the transformation y = (c2
1/3β)1/3ξ − c2, H = (

√
3c2

1/β)1/3w reduces Eq. (3.2) in the function H(y) to
Eq. (1.4) in the function w(ξ).

In the case β = 0, we obtain the stationary solution (1.7) of Eqs. (1.1).
IS (L1.3). The reduced equations (1.1) H ′ + H/t = 0 and U ′ + U/t = 0 are integrated as U = u0/t and

H = h0/t. We obtain the invariant solution (1.5).
IS (L1.4). Substitution of the representation of the solution into Eqs. (1.1) leads to the factor-system (1.10).
Let us write the factor-system of the given invariant solution in other equivalent forms because they will be

needed to study the partially invariant solutions.
The hodograph transformation U = U(H), z = v(H) reduces (1.10) to the system of equations

2Hv′ − 2v + HU ′ + U = 0,

Uv′ + (U − 2v)U ′ + g +
1

3H

(
H3

(U ′

v′
+

U ′2

v′2
+ (2v − U)

(U ′′

v′2
− U ′v′′

v′3
)))′

= 0

in the functions U(H) and v(H). From the first equation, we express v(H) = −U

2
− H

∫
U

H2
dH , and the second

equation then becomes

U − 2HU ′ +
1
∆

(g − HU ′2) +
1

∆2

(2
3

H3U ′′′ + 3H2U ′′ + HU ′
)

+
1

∆3

(2
3

H3U ′U ′′′ + H3U ′′2 +
11
2

H2U ′U ′′ +
10
3

HU ′2
)

+
U ′

∆4

(H3

6
U ′U ′′′ + H3U ′′2 + 4H2U ′U ′′ + 3HU ′2

)
+

HU ′2

∆5

(H

2
U ′′ + U ′

)2

= 0, (3.3)

where ∆ = v′(H) = −U ′

2
− U

H
−

∫
U

H2
dH .
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Substitution of the representation of the solution in the form u = βt+(x−βt2/2)1/2U(z̄), h = (x−βt2/2)H(z̄),
z̄ = t(x − βt2/2)−1/2 into Eqs. (1.1) leads to the equations

3HU + 2H ′ − z̄(HU)′ = 0,

β +
U2

2
+

(
1 − z̄

2
U

)
U ′ + g

(
h − z̄

2
H ′

)

=
z̄5

12H

(
H3

(U ′′

z̄3
+

U2

z̄4
− 3U

2z̄3
U ′ +

1
2z̄2

(U ′2 − UU ′′)
))′

.

The transformation U = U(H), z̄ = v(H) reduces them to the system

3HUv′ − (HU ′ + U)v + 2 = 0,

(
β +

U2

2

)
v′ +

(
1 − vU

2

)
U ′ + g

(
hv′ − v

2

)

+
v5

12H

(
H3

(U ′v′′

v3v′3
− U ′′

v3v′2
− U2

v4
+

3
2

UU ′

v3v′
− UU ′v′′

2v2v′3
+

1
2v2v′2

(UU ′′ − U ′2)
))′

= 0.

From the first equation, we express v(H) = −2
3

(HU)1/3

∫
(HU)−4/3 dH , substitute it into the second equation,

and obtain the following equation for the function U(H):

β − U2 +
H2U2

3
+ gH − 3g

2∆
HUv +

3
∆

HUU ′ +
3U2

2∆
(Uv − 2) +

+
H2U2

8∆
(18 − 23Uv) +

H2U2

4∆2
(94 − 149Uv + 52U2v2)

+
H2U2

∆3

(
80 − 389

2
Uv + 135U2v2 − 327

8
U3v3

)
+

21
2

H2

∆4
U2(Uv − 2)3(3Uv − 1)

+
2

∆3
H3UU ′(∆ − 1) +

9
8

H5

∆4
U3v2U ′′′(Uv − 2)2 − 27

8
H6

∆5
U3v3U ′′2(Uv − 2)2

+
H4

∆3
U2vU ′′

(
(Uv − 2)

(39
8

Uv − 3
)
− 1

∆
(Uv − 2)2

(99
8

Uv − 21
4

)
+

27
2∆2

Uv(Uv − 2)3
)

− 27
2

H2

∆5
U3v(Uv − 2)4 = 0, ∆ = (HU)′v − 2. (3.4)

Finally, substituting the solution of the form u = x/t + tU(z), h = t2H(z) into Eqs. (1.1), we obtain the
reduced equations

3H − zH ′ + (HU)′ = 0,

2U + (U − z)U ′ + gH ′ + (H3(2 + 3U ′ + U ′2 + (z − U)U ′′))′/(3H) = 0.

Under the transformation U = U(H), z = v(H), they become

3Hv′ − v + HU ′ + U = 0,

2Uv′ + (U − v)U ′ + g +
1

3H

(
H3

(
2 + 3

U ′

v′
+

U ′2

v′2
+ (v − U)

(U ′′

v′2
− U ′v′′

v′3
)))′

= 0.

From the first equation, we express v(H) = −U

3
− 4

9
H1/3

∫
H−4/3U dH , substitute it into the second equation,

and obtain the following equation for the function U(H):
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2U − 3HU ′ +
1
∆

(g + 2H − HU ′2) +
1

∆2

(
H3U ′′′ +

19
3

H2U ′′ +
55
9

HU ′
)

+
1

∆3

(2
3

H3U ′U ′′′ + H3U ′′2 +
65
9

H2U ′U ′′ +
173
27

HU ′2
)

+
U ′

∆4

(H3

9
U ′U ′′′ +

2
3

H3U ′′2 +
82
27

H2U ′U ′′ +
74
27

HU ′2
)

+
HU ′2

9∆5
(HU ′′ + 2U ′)2 = 0, (3.5)

where ∆ = v′(H) = −U ′

3
− 4

9
U

H
− 4

27
H−2/3

∫
H−4/3U dH .

4. Partially Invariant Solutions. The fourth column of Table 2 gives the representation of the partially
invariant solution for the two-dimensional and three-dimensional subalgebras of the Lie algebra L4 (1.2). We note
that the PISs constructed by the subalgebras L2.i (i = 2, . . . , 5) are irregular. All PISs of the Green–Naghdi
equations are reducible to the invariant solutions of these equations.

In studies of the partially invariant solutions of the Green–Naghdi equations in some cases, if u is chosen as
a superfluous function, the factor-system has a particular solution that corresponds to the solution of Eqs. (1.1):

h = 0, x = tu + Φ(u).

Below, in the integrating of the factor-system, this single nonreducible solution will be discarded since it has no
physical meaning.

PIS (L3.1). For h0 �= 0, the factor-system

h0ux = 0, ut + uux = h2
0(uxt + uuxx − u2

x)x/3

implies that ut = 0 and ux = 0. We obtain the constant solution of Eqs. (1.1) u = u0, h = h0, i.e., IS (L2.2)
with β = 0.

PIS (L3.2). Substitution of the representation of the solution into Eqs. (1.1) leads to the system

ht + (βt + 3u0h
1/2/2)hx = 0,

β + (g + u2
0/2)hx + u0h

−1/2(ht + βthx)/2

= u0(h3/2(hhxt − hthx/2) + βth3/2(hhxx − h2
x/2) + u0h

2(hhxx − h2
x))x/(6h).

For h �= 0, replacing in the second equation the derivatives ht and hxt by virtue of the first equation, we obtain

β + (g − u2
0/4)hx + u2

0(h
3hxx + 2h2h2

x)x/(12h) = 0.

In the following, the second equation of the factor-system will be given in this form containing only the derivatives
of the required function with respect to x.

The first equation of the factor-system is integrated. Substitution of its solution x−βt2/2−3u0th
1/2/2 = Φ(h)

into the second equation leads to the fourth-order polynomial in t:

β(Φ′ + 3u0th
−1/2/4)5 + (g − u2

0/4)(Φ′ + 3u0th
−1/2/4)4 + u2

0P2(t)/12 = 0. (4.1)

Here and below, Pn(t) denotes a certain polynomial in t of order n. In Eq. (4.1), splitting in the powers of the
variable t is possible. For β �= 0, equating the coefficients at the powers of t, we obtain the equations u0 = 0 and
Φ′4(βΦ′ + g) = 0. The condition Φ′ = 0, i.e., Φ(h) = const, implies the contradictory equality x − βt2/2 = const.
Therefore, Φ(h) = −gh/β − a, which gives the solution of Eqs. (1.1) u = βt, h = (β/g)(βt2/2 − x − a), which is
invariant with respect to a subalgebra with the operator basis 〈Y1 + βY3, Y4 + 2aY2〉. This subalgebra is similar to
the subalgebra L2.2.

For β = 0, equating the coefficients at the powers of t in (4.1), we obtain u0 = 0 and Φ′ = 0, which implies
the contradictory equality x = const. However, in the case β = 0, the factor-system has a constant solution. Thus,
we obtain the solution u = u0h

1/2
0 , h = h0, which is reducible to the IS (L2.2) with β = 0.

PIS (L3.3). For h0 �= 0, the first equation of the factor-system

h0(2 + tux) = 0, ut + uux = h2
0(uxt + uuxx − u2

x)x/3

is integrated as u = f(t) − 2x/t. Then, the second equation becomes the contradictory equality f ′(t) − 2f(t)/t

+ 6x/t2 = 0. Thus, in this case there is no solution.
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PIS (L2.1). The factor-system consists of the equations

H ′(t) + H(t)ux = 0, ut + uux = H2(t)(uxt + uuxx − u2
x)x/3,

whose solution is u = (x + u0)/(t + a), H = h0/(t + a), which gives a solution of Eqs. (1.1) that is invariant with
respect to the subalgebra 〈Y3 + aY2〉 similar to L1.3.

PIS (L2.2). The factor-system consists of the equations

ht + (βt + U + hU ′)hx = 0,

β + (g − hU ′2)hx + (h4U ′2hxx + (2hU ′U ′′ + 3U ′2)h3h2
x)x/(3h) = 0.

Substitution of the solution x − βt2/2 − t(hU)′ = Φ(h) of the first equation into the second equation leads to the
fourth-order polynomial in t:

β(Φ′ + t(hU)′′)5 + (g − HU ′2)(Φ′ + t(hU)′′)4 − h3U ′2(Φ′′′/3 + t(hU)IV )(Φ′ + t(hU)′′)/3

+ h3U ′2(Φ′′ + t(hU)′′′)2 − h2U ′(6hU ′′ + 10U ′)(Φ′′ + t(hU)′′′)(Φ′ + t(hU)′′)/3

+ (2h3U ′U ′′′ + 2h3U ′′2 + 14h2U ′U ′′ + 9hU ′2)(Φ′ + t(hU)′′)2/3 = 0. (4.2)

The coefficient at t5 vanishes when (hU)′′ = 0. In the case β = 0, the coefficient at t4 can also vanish for g−HU ′2 = 0.
However, the substitution U(h) = c1 ± 2

√
gh in (4.2) gives the contradictory equality 9g2t2/(8h) + P1(t) = 0.

Therefore, we substitute the solution U(h) = c1/h − a of the equation hU ′′ + 2U ′ = 0 into (4.2). As a result, we
obtain an equation for the function Φ(h) that does not contain t. Now, the solution x + at − βt2/2 = Φ(h) of the
first equation of the factor-system can be substituted into the second equation in explicit form for h: h = H(ȳ),
where ȳ = x + at − βt2/2. The function H(ȳ) satisfies the equation

β + (g − c2
1/H3)H ′ + c2

1(H
′′′/H − 2H ′H ′′/H2 + H ′3/h3)/3 = 0.

Integrating this equation, we find that the solution of system (1.1) for β �= 0 is defined by the equalities

u = βt + c1/h − a, h = H(ȳ), HH ′′ = H ′2/2 − 3/2 − 3(gH3 + β(ȳ + c2)H2)/c2
1.

For β = 0, the solution of Eqs. (1.1) of the simple wave type os defined by the equalities

u =
c1

h
− a,

h∫

h0

(3 + c2h + c3h
3 − 3gc−2

1 h3)−1/2 dh = c4 ± (x + at).

The obtained solution is invariant with respect to the subalgebra 〈Y1 + βY3 − aY2〉 similar to L1.2.
PIS (L2.3). The factor-system consists of the equations

Ht + t(U + HU ′)Hx + (2/t)H = 0,

U − 2HU ′ + t2(g − HU ′2)Hx + t4((U ′ + 2HU ′′)H3Hx + t2H4U ′2Hxx + t2(2HU ′U ′′ + 3U ′2)H3H2
x)x/(3H) = 0.

Substitution of the solution
x

t2
+

U

2
+ H

∫
U

H2
dH =

1
t2

Φ(ξ), ξ = t2H

of the first equation into the second equation leads to the equation with split variables for the functions Φ(ξ) and
U(H):

U − 2HU ′ + (g − HU ′2)/∆ + (2H3U ′′′/3 + 3H2U ′′ + HU ′)/∆2

+ H(2H2U ′U ′′′ + 2H2U ′′2 + 14HU ′U ′′ + 9U ′2 − (U ′ + 2HU ′′)(ξΦ′′ + HV ′′))/(3∆3)

− H(U ′2(ξ2Φ′′′ + H2V ′′′) + (6HU ′U ′′ + 10U ′2)(ξΦ′′ + HV ′′))/(3∆4) + HU ′2(ξΦ′′ + HV ′′)2/∆5 = 0,

V (H) = −U

2
− H

∫
U

H2
dH, ∆ = Φ′ + V ′.
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Setting Φ′(ξ) = c1, for the function U(H) we obtain Eq. (3.3), in which

∆ = c1 − U ′

2
− U

H
−

∫
U

H2
dH.

The constant c1 can be included in the term ∫
U

H2
dH ;

then Φ′(ξ) = 0 and Φ(ξ) = −a. After integration of Eq. (3.3), the function H is determined from the relation

x + a

t2
= −U

2
− H

∫
U

H2
dH,

which gives a solution of Eqs. (1.1) that is invariant with respect to the subalgebra 〈Y4 + 2aY2〉 similar L1.4.
PIS (L2.4). The factor-system consists of the equations

Ht + (βt + y1/2(U + HU ′))Hx + (3/2)y−1/2HU = 0,

β + U2/2 − 3HUU ′/2 + gH + y(g − HU ′2)Hx + (y4(2HU ′U ′′ + 3U ′2)H3H2
x

+ y4H4U ′2Hxx + y3(3HUU ′′ + 5HU ′2 + 5UU ′)H3Hx/2 + y2H3U2/2)x/(3yH) = 0.

From the solution of the first equation

ty−1/2 +
2
3

(HU)1/3

∫
(HU)−4/3 dH = y−1/2Φ(ξ), ξ = y1/2(HU)1/3,

we find the quantities

Hx = −3HUV

2y∆
, Hxx =

3
y2

HU
(5V

4∆
+

V

∆2
− 3HU

4∆3
(HU)′′V 3 − (HU)1/3

∆3
ξΦ′′

)
,

V = (HU)1/3
(
Φ′ − 2

3

∫
(HU)−4/3 dH

)
, ∆ = (HU)′V − 2.

Substitution of the above quantities into the second equation of the factor-system yields an equation for the func-
tions Φ(ξ) and U(H), which is not given here to save space. Setting Φ′(ξ) = c1 in this equation, for the function U(H)
we obtain Eq. (3.4), in which

v = (HU)1/3
(
c1 − 2

3

∫
(HU)−4/3 dH

)
.

The constant c1 can be included in the term ∫
(HU)−4/3 dH ;

then, Φ′(ξ) = 0 and Φ(ξ) = −a. After integration of Eq (3.4), the functions H are determined from the relation

(t + a)y−1/2 = −2
3

(HU)1/3

∫
(HU)−4/3 dH,

which gives a solution of Eqs. (1.1) that is invariant with respect to the subalgebra 〈Y4 + a(Y1 +βY3)〉, similar L1.4.
PIS (L2.5). The factor-system consists of the equations

Ht + (x/t + t(U + HU ′))Hx + 3H/t = 0,

2U − 3HU ′ + t2(g − HU ′2)Hx + t2(t4H4U ′2Hxx

+ t4(2HU ′U ′′ + 3U ′2)H3H2
x + t2(5U ′ + 3HU ′′)H3Hx + 2H3)x/(3H) = 0.

Substitution of the solution
x

t2
+

U

3
+

4
9

H1/3

∫
H−4/3U dH =

1
t

Φ(ξ), ξ = tH1/3

of the first equation into the second equation leads to the following equation for the functions Φ(ξ) and U(H):
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2U − 3HU ′ + (g + 2H − HU ′2)/∆ + (H3U ′′′ + (17/3)H2U ′′ + 5HU ′)/∆2

+H3U ′2(V ′′ + H−5/3(ξΦ′′ − 2Φ′)/9)2/∆5 + H(2H2U ′U ′′′ + 2H2U ′′2 + 14HU ′U ′′

+ 9U ′2 − (3H2U ′′ + 5HU ′)(V ′′ + H−5/3(ξΦ′′ − 2Φ′)/9))/(3∆3)

− H2(HU ′2(V ′′′ + H−8/3(ξ2Φ′′′ − 6ξΦ′′ + 10Φ′)/27)/(3∆4)

+ (6HU ′U ′′ + 10U ′2)(V ′′ + H−5/3(ξΦ′′ − 2Φ′)/9)) = 0,

V (H) = −U

3
− 4

9
H1/3

∫
H−4/3U dH, ∆ = V ′ +

1
3

H−2/3Φ′.

Setting Φ′(ξ) = c1, for the function U(H) we obtain Eq. (3.5), in which

∆ =
1
3

H−2/3
(
c1 −

∫
H−4/3U dH

)
− U ′

3
− 4

9
U

H
.

The constant c1 can be included in the term
∫

H−4/3U dH ; then Φ′(ξ) = 0 and Φ(ξ) = −a. After integration of

Eq. (3.5), the function H is determined from the relation

x + at

t2
= −U

3
− 4

9
H1/3

∫
H−4/3U dH,

which gives a solution of Eqs. (1.1) that is invariant with respect to the subalgebra 〈Y4 + aY3〉 similar to L1.4.
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